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THE ROLE OF VISUAL REPRESENTATIONS
IN THE LEARNING OF MATHEMATICS

Abraham Arcavi
Weizmann Institute of Science, Israel-
ntarcavi@ wiccmail . weizmann.ac.il

Introduction

Vision is central to our biological and socio-cultural being. Thus,
the biological aspect is described well in the following (Adams & Victor,
1993, p. 207): “The faculty of vision is our most important source of
information about the world. The largest part of the cerebrum is involved
in vision and in the visual control of movement, the perception and the
elaboration of words, and the form and color of objects. The optic nerve
contains over 1 million fibers, compared to 50,000 in the auditory nerve.
The study of the visual system has greatly advanced our knowledge of the
nervous system. Indeed, we know more about vision than about any other
sensory system”. As for the socio-cultural aspect, it is almost a commonplace
to state that we live in a world where information is transmitted mostly in
visual wrappings, and technologies support and encourage communication
which is essentially visual. Although “people have been using images for
the recording and communication of information since the cave-painting
era ... the potential for “visual culture” to displace “print culture” is an
idea with implications as profound as the shift from oral culture to print
culture.” (Kirrane, 1992, p.58).

Therefore, as biological and as socio-cultural beings, we are
encouraged and aspire to “see” not only what comes *“within sight”, but
also what we are unable to see. Thus, one way of characterizing visualization
and its importance, both as a “noun” —the product, the visual image— and
as a “verb” —the process, the activity— (Bishop, 1989, p. 7), is that
“Visualization offers a method of seeing the unseen” (McCormick et al,
1987, p. 3). 1 take this sentence as the leitmotif of this presentation in order
to re-examine first, its nature and its role and then, the innovations of research
and curriculum development .

Seeing the unseen - a first round

Taken literally, the unseen refers to what we are unable to see because
of the limitations of our visual hardware, e.g. because the object is to far or
too small. We have developed technologies to overcome these limitations
to make the unseen seeable. Consider, for example, the photographs taken
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by Pathfinder on Mars in 1997. Or, for.example, a 4,000 times amplification
of a white blood cell about to phagocytise a bacterium, or a 4,000 times
amplification of a group of red blood cells. We may have heard descriptions
of them prior to seeing the pictures, and our imagination may have created
images for us to attach to those descriptions. But seeing the thing itself,
with the aid of technology which overcomes the limitation of our sight,
provides not only a fulfillment of our desire to “‘see” and the subsequent
enjoyment, but it may also sharpen our understanding, or serve as a
springboard for questions which we were not able to formulate before.

Seeing the unseen - in data

In a more figurative and deeper sense, seeing the unseen refers to a
more “abstract” world, which no optical or electronic technology can
“visualize” for us. Probably, we are in need of a “cognitive technology” (in
the sense of Pea, 1987, p. 91) as “any medium that helps transcend the
limitations of the mind ... in thinking, learning, and problem solving
activities.” Such “technologies” might develop visual means to better “‘see”
mathematical concepts and ideas. Mathematics, as a human and cultural
creation dealing with objects and entities quite different from physical
phenomena (like planets or blood cells), relies heavily (possibly much more
than mathematicians would be willing to admit) on visualization in its
different forms and at different levels, far beyond the obviously visual field
of geometry, and spatial visualization. In this presentation, I make an attempt
to scan through these different forms, uses and roles of visualization in
mathematics education. For this purpose, I first blend (and paraphrase) the
definitions of Zimmermann & Cunningham (1991, p.3) and Hershkowitz
et al. (1989, p.75) to propose that:

“Visualization is the ability, the process and the product of creation,
interpretation, use of and reflection upon pictures, images, diagrams, in
our minds, on paper or with technological tools, with the purpose of depicting
and communicating information, thinking about and developing previously
unknown ideas and advancing understandings.”

A first type of the “unseen” we find in mathematics (or allied disciplines,
e.g. data handling or statistics) consists of data representations. The
following example (See Figure 1) is a chart, considered a classic of data
graphing, designed by Charles Joseph Minard (1781-1870), a French
engineer. :

Tufte (1983, p.40) considers this graph a “Narrative Graphic of Space
and Time”, and refers to Marey (1885, p.73) who notes that it defies the
historian’s pen by its brutal eloquence in portraying the devastating losses
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suffered in Napoleon’s 1812 Russian campaign. At the left, at the then Polish-
Russian border, the chart shows the beginning of Napoleon’s campaign
with an army of 422,000 men (represented by the width of the “arm”), the
campaign itself and the retreat (black “arm”), which is connected to a sub-
chart showing datesand temperatures. The two-dimensional graph tells the
“whole” story by displaying six variables: the army size, its exact (two-
dimensional) location, direction, temperature and dates in a compact and
global condensation of information. The visual display of information
enables us to “see” the story, to envision some cause-effect relationships,
and possibly to remember it vividly. This chart certainly is an illustration
of the phrase “a diagram is worth a thousand (or “ten thousand’) words,”
because of a) their two-dimensional and non-linear organization as opposed
to the emphasis of the “printed word” on sequentiality and logical exposition
(Larkin and Simon, 1987, p.68, Kirrane, 1992, p. 59); and b) their grouping
together of clusters of information which can be apprehended at once,
similarly to how we see in our daily lives, which helps in “reducing
knowledge search” (Koedinger, 1992, p. 6) making the data “perceptually
easy” (Larkin and Simon, 1987, p.98).
Anscombe (1973, p. 17) claims that “Graphs can have various purposes,
such as: (i) to let us perceive and appreciate some broad features of the
data, (ii) to let us look behind those broad features and see what else is
there”. And he presents the following example (See Figure 2) for which the
data are described by the following identical parameters (See Figure 3)and
which looks quite different when the data are plotted (See Figure 4)

In this case, the graphical display may support the unfolding of dormant
characteristics of the data, because it does more than just depict. As Tufte
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X Y X Y X Y X Y

100 804 100 S.14 100 7.46 80 6.58
80 695 - 80 8.14 8.0 6.77 80 5.76
130 758 130 874  13.0 12.74 80 771
9.0 881 90 8.77 90 7.1 80 884
1.0 833 11.0 926 110 781 80 8.47
140 996 140 810 140 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0  6.08 8.0 525
40 4.26 4.0 3.10 40 539  19.0 1250
120 1084 120 913 120 8.15 80 556
7.0 482 70  7.26 70 642 80 7.91
50 5.68 50 474 50 573 8.0 6.89

Figure 2
N =11
mean of X's = 9.0
mean of Y's = 7.5
equation of regression line: ¥ = 340.5X
standard error of estimate of slope = 0.118
t = 4.24 .
sum of squares X - X = 110.0
regression sum of squares = 27.50
restdual sum of squares of Y = 13.75
_correlation coefficient = .82
12 = .67

Figure 3

says, that in this case: “Graphics reveal data. Indeed graphics can be more
precise and revealing than conventional statistical computations”.

Seeing the unseen - in symbols and words

Visualization can accompany a symbolic development, since a visual image,
by virtue of its concreteness, can be “an essential factor for creating the
feeling of self-evidence and immediacy” (Fischbein, 1987, p.101).
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Figure 4

Consider, for example, the mediant property of positive fractions:
a a+c ¢

Flegg, Hay and Moss (1985, p. 90) attribute this “rule of intermediate
numbers” to the French mathematician Nicolas Chugquet, as it appears in
his manuscript La Triparty en la Science des Nombres (1484). The symbolic
proof of this property is quite simple, yet it may not be very illuminating to
students. Georg Pick (1859-1943?) an Austrian-Czech mathematician wrote
- “The plane lattice ... has, since the time of Gauss, been used often for
visualization and heuristic purposes. ... [in this paper] an attempt is made
to put the elements of number theory, from the very beginning, on a
geometrical basis” (free translation from the original German in Pick, 1899).

a .
Following Pick, we represent the fraction 5 (whether reduced or not)

a

by the lattice point (b,a). The reason for representing Z by (b,a) and ndt

(a,b), is for visual convenience, since the slope of the line from the origin

a :
O to (b,a) is precisely Z , and hence fractions arranged in ascending order
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of magnitude are represented by lines in ascending order of slope. Visually,
the steeper the line the larger the fraction. (Note also that equivalent fractions
are represented by points on the same line through the origin#If the lattice
point P represents a reduced fraction, then there are no lattice points between

O and P on the line OP). Now, the visual version of the mediant of é— , ;i ,
Lo 144 . “ »

which is 35501 represented by the diagonal of the parallelogram “defined
1 4

by § and 3 -

bl R ALE LA EREREERERENLLERNENN.)

a ¢

_The same holds in general for ; g I would claim that the
“parallelogram’ highlights the reason for the property, and may add meaning
and conviction to the symbolic proof. In this example, we have not only

a
represented the fraction ; visually by the point with coordinates (b,a) - or

the line from the origin through (b,a) - but capitalized on the visualization
to bring geometry to the aid of what seem to be purely symbolic/algebraic
properties. Much mathematics can be done on this basis; see, for example
Bruckheimer and Arcavi (1995).
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Papert (1980, p. 144) brings the following problem. “Imagine a string

around the circumference of the earth, which for this purpose we shall
consider to be a perfectly smooth sphere, four thousand miles in radius.
Someone makes a proposal to place a string on six-foot-high poles.
Obviously this implies that the string will have to be longer.” How much
longer? Papert says that “Most people who have the discipline to think
before calculating ... experience a compelling intuitive sense that “a lot”
of extra string is needed.” However, the straightforward algebraic
representation yields 2a(R+h)-27R, where R is the radius of the Earth and
h the height of the poles. Thus the result is 27h, less than 12 meters, which
is amazingly little and independent of the radius of the Earth! -
For many, this result is a big surprise, and a cause for reflection on the gap
between what was expected and what was obtained. Papert wa-
uncomfortable with the possible morale from this example, that our initia
intuitions may be faulty, therefore they should not be trusted, and it is onl
the symbolic argument that should count. His discomfort led him to propos
a visual solution, which would serve to educate, or in his own words t
“debug”, our intuitions, so that the symbolic solution is not only correct
but also natural and intuitively convincing. His non-formal and graphica
solution starts with a simple case, a string around a “square Earth”

N\

“The string on poles is assumed to be at distance h from the square.
Along the edges the string is straight. As it goes around the corner it follows
a circle of radius A.... The extra length is all at the comers... the four
quarter circles make a whole circle... that is to say 27h.” (p. 147). If we
increase the sides of the square, the amount of extra string needed is still
the extra four quarters of a circle. Then he proceeds to deform “continuously”
the square towards the round earth. First by looking at the shape of an
octagon. '
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The extra pieces of string “is all in the pie slices at the corers. If you
put them together they form a circle of radius 4. As in the case of the square,
this circle is the same whether the octagon is small or big. What works for
the square (4-gon) and for the octagon (8-gon) works for the 100-gon and
for the 1000-gon.” (p. 149). The formal symbolic result becomes now also
visually (and thus intuitively) convincing. After such a solution, we may
overhear ourselves saying “I see”, double-entendre intended. Visualization
here (and in many similar instances) serves to adjust our “wrong” intuitions
and harmonize them with the opaque and “icy” correctness of the symbolic
argument.

Another role of visualization in an otherwise “symbolic” context, is
where the visual solution to a problem may enable us to “see”, that is to
engage with concepts and meanings which can be easily bypassed by the
symbolic solution of the problem. Consider, for example, the following:
“What is the common characteristic of the family of linear functions whose
equation is f{x)=ax+a 7’ The symbolic solution would imply a simple
syntactic transformation and its interpretation: f{x)=ax+a= a(x+1) -
regardless of the value of g, all the functions share the pair (-1,0). Compare
this to the following graphical solution, produced by a student. The first a
is the slope, the second is the y-intercept. Since slope is “rise over run”, and
since the value of the slope is the same value as the y-intercept, to a rise
with the value of the y-intercept must correspond a run of 1.
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(0.b)

(-1.0

Sophisticated mathematicians may claim to “see” through symbolic forms,
regardless of their complexity. For others, and certainly for mathematics
students, visualization can have a powerful complementary role in the three
aspects highlighted above: visualization as (a) support and illustration of
essentially symbolic results (and possibly providing a proof in its on right),
(b) a possible way of resolving conflict between (correct) symbolic solutions
and (incorrect) intuitions, and (c) as a way to help us engage with and
recover conceptual underpinnings which may be easily bypassed by formal
solutions.
Foreseeing the unseen - at the service of problem solving

Davis (1984, p. 35) describes a phenomenon which he calls visually-
moderated sequences (VMS). VMS frequently occurs in our daily lives.
Think of the “experience of trying to drive to a remote location visited
once or twice years earlier. Typically, one could not, at the outset, tell anyone
how to get there. What one hopes for is,. .., a VMS...: see some key landmark
... and hope that one will remember what to do at the point. Then one
drives on, again hoping for a visual reminder that will cue the retrieval of
the next string of remembered directions.” In this case, visualization is a
tool to extricate oneself from situations in which one may be uncertain
about how to proceed. As such it is linked, in this case, not so much to
concepts and ideas, but rather to procedures. One. of the mathematical
examples Davis (p. 34) brings is the following: “A student asked to factor
x2 - 20x + 96, might ponder for a moment, then write
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x2 - 20x + 96

‘ ( ) ( )

then ponder, then write, x2 - 20x + 96
(x )& ),

then ponder some more, then continue writing

x2 - 20x + 96
(x- )&x- ),

and finally complete the task as x2 - 20x + 96
(x-12)(x-8)”

The mechanism is more or less: “look, ponder, write, look, ponder,
write, and so on.” In other words, “a visual clue V1 elicits a procedure P}
whose execution produces a new visual cue V2, which elicits a procedure
P2,... and so on.”

Visualization at the service of problem solving, may play a central role to
inspire a whole solution, beyond the merely procedural. Consider, for
example, the following problem (Barbeau, 1997, p. 18).

Let n be a positive integer and let an nxn square of numbers be formed
for which the element in the ith row and the jth column (1<i,j,<n) is the
smaller of i and j. For n=5, the array would be: 5 2

Show that the sum of all the numbers in the array is /” + 2° + 37 + ...

2
+n".
1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5
A solution.
1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5
64
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“Algebraically, we see that the sum of the numbers in the kth gnomon
consisting of the numbers not exceeding & in the kth row and the kth column
is -
A+2+ .. +(k-1))2+k= k2. The result follows.” (Barbeau, p. 20) .
This solution has some elements of visualization in it: it identifies the
gnomons as “‘substructures” of the whole in which a clear pattern can be
established. However, an alternative solution presented by the -author is
even more interesting visually.

“We can visualize the result by imagining an nxn checkerboard.

Begin by placing a checker on each square (n2 checkers); place an

additional checker on every square not in the first row or the first

column ((n-] )2 checkers); then place another checker on every
square not in the first two rows or the first two columns ((n-2)2

checkers). Continue on in this-way to obtain an allocation of n? +

(n-l)2 + (n-2)2 + -+ + 22 + ]2 checkers; the number of checkers

placed on the square in theith row and the jth column is the smaller

ofiandj.”
In the examples in previous subsections, visualization consisted of making
use of a visual representation of the problem statement. Iclaim that, in this
example, visualization consists of more than just a translation, the solver
imagined a strongly visual “story”(not implied by the problem statement),
he imposed it on the problem, and derived from it the solution.
Probably the inspiration for this visual story, was the author’s previous
experience and knowledge, which helped him envision the value of the
number matrix as height, or in other words he probably saw a 2-D
compression of a 3-D data representation. In any case, one’s visual repertoire
can fruitfully be put at the service of problem solving and inspire creative -
solutions.
Seen the unseen - more than just believing it?
Perhaps also proving it?
“Mathematicians have been aware of the value of diagrams and other visual
tools both for teaching and as heuristics for mathematical discovery. ...
But despite the obvious importance of visual images in human cognitive
activities, visual representation remains a second-class citizen in both the
theory and practice of mathematics. In particular, we are all taught to look
askance at proofs that make crucial use of diagrams, graphs, or other
nonlinguistic forms of representation, and we pass on this disdain to
students.” However, “visual forms of representation can be important ... as
legitimate elements of mathematical proofs.” (Barwise and Etchemendy,
1991, p. 9). We have already illustrated this in the example of the mediant
property of fractions. As another example, consider the following beautiful
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~ proof taken from the section bearing the very suggestive name of “proofs
without words” (Mabry, 1999, p. 63). '

1 12 13 I
7+(F) +(F)+ =3

It can be argued that the above is neither (a) “without words” nor (b) “a V
proof”. Because (a) although verbal inferences are not explicit, when we
see it, we are most likely to decode the picture by means of words (either -
aloud or mentally); and (b) Hilbert’s standard for a proof to be considered
as such is whether it is arithmetizable, otherwise it would be considered
non-existent (Hadamard, 1954, p. 103). As to the first reservation, we may
counterargue that visualization as a process is not intended to exclude

“verbalization (or symbols, or anything else), quite the contrary, it may well
complement it. As to the second reservation, there is a “clearly identifiable
if still unconventional movement ... growing in the mathematics community,
whose aim is to make visual reasoning an acceptable practice of
mathematics, alongside and in combination with algebraic reasoning.
According to this movement, visual reasoning is not meant only to support
the discovery of new results and of ways of proving them, but should be
developed into a fully acceptable and accepted manner of reasoning,
including proving mathematical theorems.” (Dreyfus, 1994, p.114)

Consider, for example, the following.

How many matches are needed to build the following nxn square?
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This problem was tried in several teacher courses in various countries and
with several colleagues, and the many solutions proposed were collected
and analyzed (Hershkowitz, Arcavi and Bruckheimer, submitted). The
majority of the solution approaches were visual, yet they differ in their"
nature. There were those who decomposed the whole array of matches into
what they saw as easily countable units. For example, a square, U’s and
L’s,

— - - -
RS
A J
. *
[ ]
67
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Others-identified I.’s and single matches, and looked at the whole as

- -
# ) )
— " -
- - -- -
L]
L] 3 2 2 s
[ ]
[ ]
[ ]
- - - -

Some participants counted unit squares, and then proceeded to adjust
for what was counted twice. Yet others identified the smallest possible
unit, a single match and counted the n matches in a row (or a column),
multiplied it by the n+/ rows (or columns), and then multiplied by 2. It
would seem that the simpler the visually identified unit (one match), the
more global and uniform the counting strategy became.

Some participants imagined units whose existence is only suggested:
the “intersection” points,

— ) | + e W

~
[ T

and then proceeded to make auxiliary constructions to make the count
uniform

68
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which then they adjusted for double counting.

Thus decomposition into what was perceived as easily countable
units took different forms, but it was not the only visual strategy. Another
visual strategy consisted of changing the whole gestalt into a new one, in
which patterns are easier for the solver to identify. For example,

| ] ]
RS, N N .
| 1
—.._.. -—..—o
| ] ]
U L 9
U
" __..
...... LT
TN TS
...... 0 O I
69
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“sentence is attributed to Goethe. Its last part: “We see what we know’

Change of gestalt took other forms as well: instead of “breaking and
rearranging” the original whole as above, imposing “auxiliary constructions”
A

<!
!
A

whose role consists of providing visual “crutches”, which in themselves
are not counted, but which support and facilitate a certain counting strategy.

Surprisingly, visualization, for others, was sparked by their symbolic
solution. Having obtained the final count in the form 2n(n+1), they applied
a symbolic transformation to obtain 4 x . This transformation suggested the
search for a visual pattern which would illustrate a counting strategy. This
exemplifies how visual reasoning can also be guided, inspired and
supported, by a symbolic expression, namely by *“symbol sense” (Arcavi,
1994). :

In sum, we found that visualization consisted of processes different in
nature. However, all of them seem to corroborate Fischbein’s claim that
visualization “not only organizes data at hand in meaningful structures,
but it is also an important factor guiding the analytical development of a
solution.” (Fischbein, 1987, p.101). We propose that visualization can be
even more than that: it can be the analytical process itself which concludes
with a general formal solution.

Do you and I see alike?

“We don’t know what we see, we see what we know”. I was told that this

’

applies to many situations in which students do not necessarily see what
we as teachers or researchers do. For some this sentence may be a truism,
already described in many research studies, nevertheless it is worth
analyzing some examples.
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Consider the following taken from Magidson (1989). While working
with a graphing software, students were required to type in equations one
at a time, and draw their graphs. The equations were y=2x+1, y=3x+1,
- y=4x+1, and students were asked what do they notice, in which way the
lines graphed are similar and in which way they are different, and to predict
(and test the prediction) about the graph of y=5x+1. The expectation was
that the task would direct student attention (at least at the phenomenological
level) to what an expert considers relevant: the influence of the number
that multiplies the x, and that all lines-go through (0, /). Presmeg (1986, p.
44) stated that many times “‘an image or diagram may tie thought to irrelevant
details”, irrelevant to an expert that is. Some of the answers reported by
Magidson certainly confirm this: there were students who “noticed” the
way the software draws the lines as “starting” from the bottom of the screen.
Others talked about the degree of jaggedness of the lines, which is an artifact
of the software and depends on how slanted the lines are. And there were
those who noticed that the larger the number, the more “upright” the line,
but when asked to predict the graph of y=>5x+1, their sketch clearly did not
go through (0,1).

A similar phenomenon in a slightly different context is reported by Bell
and Janvier (1981) where they describe “pictorial distractions”: graphs are
judged by visually salient clues, regardless of the underlying meanings.

Clearly, our perception is shaped by what we know, especially when

we are looking at what Fischbein (as reported in Dreyfus, 1994, p. 108)
refers to diagrams which are loaded with an “intervening conceptual
structure”. Some of the visual displays I have brought so far are either
displays of objects (matches) or arrays of numbers which allow one to
observe and manipulate patterns. Others were displays of data, for which'a
small number of ad-hoc conventions suffices to make sense of the graph.
However, when we deal, for example, with Cartesian graphs of linear
. functions, what we look at has an underlying representation system of
conceptual structures. Experts may often be surprised that students who
are unfamiliar (or partially familiar) with the underlying concepts see
“irrelevancies” which are automatically dismissed by the expért’s vision,
even to a point that they may remain unseen.
I would like to claim further: in situations like the one described by
Magidson, what we see is not only determined by the amount of previous
- knowledge which directs our eyes, but in many cases it is also determined
by the context within which the observation is made. In different contexts,
the “same” visual objects may have different meanings even for experts.
Consider for example, the following diagram. ‘
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‘What we see are three parallel lines. If nothing more is said about the
context, we would probably think about the Euclidean geometry associations
of parallelism (equal distance, no intersection, etc.). Consider now the same
parallel lines, with a superimposed Cartesian coordinate system. For a
novice, this may be no more than two extra lines, for experts, this would
probably trigger much more: the conceptual world of Cartesian
representation of functions. The lines are now not only geometrical objects,
they have become representations of linear functions, and hence suggest
notions like, to each line corresponds an equation of the form y=ax+b (or
any other equivalent form), that these lines have equal slope (share the
same a value), and the non-existence of a solution for any pair of equations.
It may also re-direct the attention from the notion of distance between
parallel lines (as the length of a segment perpendicular to both) towards the
notion of the vertical displacement from one line to the other, namely
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whjch‘i”s'reflected by the difference in the b values.

If we now remove the superimposed Cartesian referents, and replace
them by a system of parallel axes to represent linear functions, experts
familiar with such a representation see very different things: .

;,In this case, the three lines are the representation of just three particular .
ordered pairs of a single linear function. The inclination of the lines have to

.do with the slope (the “a” in y=ax+b) but for different reasons. The

parallehsm indicates that an interval of the domain is mapped onto an
mterval of equal length in the co-domain, namely that the slope is /. (Further

"detalls about the Parallel Axes Representation, and its visually salient
characteristics, can be found in Arcavi & Nachmias, 1989,1990, 1993)

Thu$,- many times our perceptions are conceptually driven, and seeing the
unseen in this case is not just producing/interpreting a “display that reveals”
or a-tool with which we can think, as in many examples above. Seen the

"unseen, may refer to the development of a conceptual structure which

enables us to see through the same visual display, things similar to those
seen by an expert. Moreover, it also implies the competence to disentangle
contexts in which similar objects can mean very different things, even to
the same expert.
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Visualization in mathematics education
- Some unseens we are begmmng to “see” ‘

There seems to be wide agreement on the centrality of wsuallzatlon in
learning and doing mathematics. This centrality stems from the fact that
visualization is no longer related to the merely illustrative only, but is also
being recognized as a key component of reasoning (deeply engaging with
the conceptual and not the merely perceptual), problem solving, and even
proving. Yet, there are still many issues concemning visualizatjon in
mathematics education which require careful attention.

Borrowing from Eisenberg and Dreyfus (1991), I classify the difficulties
around visualization into three main categories: “cultural”, cognitive and
sociological.

The “cultural” difficulty refers to the beliefs and values held about
what mathematics and doing mathematics would mean, what is legitimate
or acceptable, and what is not. We have briefly referred to this issue while
discussing the status of visual proofs. Controversy within the mathematics
community, and statements such as “this is not mathematics” (Sfard, 1998,
p- 454) by its most prominent representatives, are likely to permeate through
to the classroom, via curriculum materials, teacher education etc. and shape
their emphasis and spirit. This attitude, which Presmeg (1997, p. 310) calls
“devaluation” of visualization, leaves little room for classroom practices to
incorporate and value visualization as a an integral part of domg
mathematics.

The cognitive difficulties include, among other things, the discussion
whose simplistic version would read as follows: is “visual” easier or more
difficult? When visualization acts upon conceptually rich images (or in
Fischbein’s words when there are intervening conceptual structures), the
cognitive demand is certainly high. Besides, reasoning with concepts in
visual settings may imply that there are not always procedurally “safe”
routines on which to hang (as may be the case with more formal symbolic
approaches). Consciously or unconsciously, such situations may be rejected
by students (and possibly teachers as well) on the grounds of being too

“slippery” or too “risky”.

Another cognitive difficulty arises from the need to attain flexible and
competent translation back and forth between visual and analytic
representations of the same situation, which is at the core of understanding
much of mathematics. Learning to understand and be competent in the
handling of multiple representations can be a long-winded, context
dependent, non-linear and even tortuous process for students (e.g.
Schoenfeld, Smith and Arcavi, 1993).
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The sociological difficulties, include what Eisenberg and Dreyfus (1991)
consider as issues of teaching. Their analysis suggests that teaching implies
a “didactical transposition” (Chevallard, 1985) which, briefly stated, means
the transformation knowledge undergoes when it is adapted from its
scientific, academic character to the knowledge as it is to be taught. It is
claimed that this process, by its very nature, linearizes, compartmentalizes
and possibly also algorithmetizes knowledge, stripping it (at least in the
early stages) from many of its rich interconnections. As such, analytic
representations, which are sequential in nature, seem to be more appropriate
and efficient for teachers.

Another kind of difficulty under the heading “sociological” (or better
socio-cultural), is the tendency of schools in general, and mathematics
classrooms in particular, to contain students from various cultural
backgrounds. Some students may come from visually rich cultures, and
therefore for them visualization may counteract possible “deficits”. In
contrast, visualizers may be under-represented amongst high mathematical
achievers (Presmeg, 1986, 1989).

Recent curriculum and research studies are taking into account some
of the above difficulties and to address them, in order to propose and explore
innovative approaches to understand and exploit the potential of visually
oriented activities. Consider, for example, the following task from
Yerushalmy (1993, p. 10),

2

in which the goal is to sketch the graphs of different types of rational
functions of the form , obtained from the given graphs of f(x) and g(x),
and analyze the behavior of the asymptotes (if any).

Arcavi, Hadas & Dreyfus (1994) describe a project for non-
mathematically oriented high school students which stimulates sense-
making, graphing, estimation, reasonableness of answers. The following,
solution produced by a student learning with this approach we found
surprising and elegant.
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-Given were the tenth element of an arithmetic sequence (a9=20) and
the sum of the first /0 elements (S 10=065). The student found the first element
and the constant difference mostly relying on a visual element: arcs, which
he envisioned as depicting the sum of two symmetrically situated elements
in the sequence, and thus having the same value. Five such arcs add up to
65, thus one arc is /3. Therefore the first element is /3-20=-7. Then, the
student looked at another visual element: the “jumps”, and said that since
there are 9 jumps (in a sequence of /0 elements starting at -7 and ending at
20), each jump must be 3.

DiSessa et al. (1991) describe a classroom experiment in which young
students are encouraged to create a representation for a motion situation,
and after several class periods they ended up “inventing” Cartesian graphing.
By being not just “consumers” of visual representations, but also their
collective creators, communicators and critics, these students developed
meta-representational expertise, est:ablishing and using criteria concerning
the quality and adequacy of representations. Thus visualization was for
them not only to work with pre-established products, but also was in itself
the object of analysis.

When a classroom is considered as a micro-cosmos, as a community of
practice, learning is no longer viewed only as instruction and exercising,
but also becomes a form of participation in a disciplinary practice. It is in
this respect that Stevens and Hall (1998, p. 108) define “disciplined
perception”. Visualization by means of graphs, diagrams and models is a
central theme which “develop and stabilize ... in interaction between people
and things”. Ways of seeing emerge in a social practice as it evolves.
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Nemirovsky and Noble (1997) describe a research study, in which, a
student makes use of a physical device which served as a transitional tool
used to support the development of her ability to “see” slope vs. distance
graphs.

In sum, new curricular emphases.and approaches, innovative classroom
practices and the understandings we develop from them, re-value
visualization and its nature placing it as a central issue in mathematics
education. This should not be taken to mean that visualization, no matter .
how illuminating the results of research, will be a panacea for the problems
of mathematics education. Some difficulties may be solved, others not.
However, understanding it better should certainly enrich our grasping of
aspects of people’s sense making of mathematics, and thus serve the
advancement of our field. _

Paraphrasing a popular song, I would suggest that “visualization is a
many splendored thing”. However, borrowing the very last sentence from
(the English poet) Thomas Gray’s (1716-1771) poem entitled *‘On the death
of a favourite cat, drowned in a tub of gold fishes” (whose story can be
easily imagined), I would also add

“Not all that tempts your wand’ering eyes
and heedless hearts, is lawful prize;
Nor all, that glisters, gold.”
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